
Comparison of Parameter-Adapted Segmentation

Methods for Fluorescence Micrographs
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� Abstract
Interpreting images from fluorescence microscopy is often a time-consuming task with
poor reproducibility. Various image processing routines that can help investigators eval-
uate the images are therefore useful. The critical aspect for a reliable automatic image
analysis system is a robust segmentation algorithm that can perform accurate segmen-
tation for different cell types. In this study, several image segmentation methods were
therefore compared and evaluated in order to identify the most appropriate segmenta-
tion schemes that are usable with little new parameterization and robustly with differ-
ent types of fluorescence-stained cells for various biological and biomedical tasks. The
study investigated, compared, and enhanced four different methods for segmentation
of cultured epithelial cells. The maximum-intensity linking (MIL) method, an
improved MIL, a watershed method, and an improved watershed method based on
morphological reconstruction were used. Three manually annotated datasets consisting
of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algo-
rithms. The comparisons and evaluations showed that the segmentation performance
of methods based on the watershed transform was significantly superior to the per-
formance of the MIL method. The results also indicate that using morphological open-
ing by reconstruction can improve the segmentation of cells stained with a marker that
exhibits the dotted surface of cells. ' 2011 International Society for Advancement of Cytometry

� Key terms
image analysis; cell segmentation; optimization; genetic algorithm; watershed; fluores-
cence imaging; evaluation

THE interpretation of fluorescence micrographs plays an important role in the anal-

ysis of cellular events such as cell growth and division, cell death, apoptosis, intercel-

lular communication, and microbial interactions with host cells. For statistical rea-

sons, typical experiments in this field usually require detection and visual assessment

of at least 100 individual specimens, which are most often prepared using several

dyes and antibodies.

The tasks involved in analyzing such images typically include detection, selec-

tion, segmentation, measuring, and counting cells and cellular interactions. Manual

analysis of experimental samples of this type is possible when there are only a few

cells and images. When larger numbers of images, cells, or events are to be analyzed,

however, the task becomes extremely tedious, repetitive, and time-consuming (1).

Specifically, as stated by Vidal et al. (2): ‘‘Segmentation is often the major bottleneck

in clinical applications—it takes a long time and the results are often hard to repro-

duce because of the user involvement.’’ This is most often due to a lack of attention,

and biased interpretation is also possible. Experimental results of this type are there-

fore usually hard to reproduce in intralaboratory and interlaboratory experiments.

There is a strong need for objective image analysis tools in order to increase the

reproducibility and effectiveness of this type of image-based evaluation. Unfortu-

nately, hardly any generally applicable sets of image-processing methods or tools are

available to support leading-edge medical and biomedical research—sets of tools that
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could be adopted on the fly for frequently changing analytical

tasks for fully or partly automated analysis of micrographs (3).

As Srinivasa noted (4), ‘‘While there has been an increasing

effort to automate analysis of biological images, tools to meet

the various challenges posed by specific applications in this

area are still in their infancy.’’ Most image analysis and inter-

pretation in this field is therefore still being done manually.

On the other hand, a strong background in automated

image processing and image interpretation is needed in order

to adapt available image analysis tools to the desired task, or

to write new scripts in image-processing toolboxes. A survey

of recent publications in the field shows that the state of the

art for fully automated or interactive micrograph image analy-

sis involves two different approaches, from opposite direc-

tions. On the one hand, there are knowledge-driven, top-

down methods that are dedicated to very specific and narrow

applications in the field of microscopic image analysis (as

detailed in the following section here). This observation was

recently supported by Wang et al. (5), who state that

‘‘depending on the cells being segmented . . . various existing
algorithms are available. A universal solution to cell segmenta-

tion . . . applicable across cell types has yet to be described.’’

Specifically, due to the differing characteristics of the cell types

to be measured and assessed, image-processing methods appli-

cable to one set of images and cells most often perform poorly

on another set. On the other hand, there are also several data-

driven, procedure-oriented image-processing frameworks and

toolboxes available, which can be applied to the analysis of

micrographs but are usually not dedicated to any specific

application.

This observed mismatch—the known and still unsolved

difficulty of describing the high-level semantics of cells and

cellular interactions in the field of medicine and biology using

adequate image analysis methods or low-level image-based

feature analysis—is also known as the ‘‘semantic gap’’ (6). In

the field of computer vision research, Garbay, for example, has

also noted this gap between the symbolic apprehension of

high-level concepts (such as cells or cellular interactions) and

their concrete instantiation in images (7). To bridge this

semantic gap between analytical issues in the interpretation of

micrographs by users, on the one hand, and the consequent

(frequently changing) sets of image-processing procedures

required on the other, we recently suggested using an image

analysis approach (3) (Fig. 1).

Using fluorescence-stained HeLa cells as a typical exam-

ple of the analysis of microbial effectors in host cells, the steps

involved in the proposed adaptive image analysis scheme are

as follows:

� On the basis of a small but representative set of reference

images (step 1),
� An interactive segmentation (step 2) is made by a user, deli-

neating and labeling the objects of interest, in this case, cell

plasma (Fig. 2).
� The manually segmented cells are then described as so-

called ‘‘ground truth’’ in a machine-readable manner (step

3).
� Using the annotated reference image data (step 1) and the

formal image description (step 3) as input data, a so-called

‘‘segmentation engine’’ is applied and optimized on a set of

parametric segmentation methods (step 4).
� As a result, the optimal segmentation parameters for the

training set are obtained (step 5).
� Based on these parameters (step 5), further fluorescence

micrographs (step 6) of the same type and image quality

can then be segmented using the trained segmentation

engine (step 7), yielding a set of segmentation objects (step

8) as a result.

OBJECTIVES

Against this background, the aim of the present study was

to compare and evaluate different image segmentation meth-

ods for a variety of fluorescence-stained cells that could be

Figure 1. The building blocks of an adaptive segmentation scheme (see text for explanation). Reproduced with permission from Witten-

berg et al. (3).
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incorporated into the segmentation engine described above, as

core methods from which a selection can be made. Specifically,

HeLa cells stained intracellularly with Alexa Fluor1 568 phal-

loidin (Invitrogen, Darmstadt, Germany), HeLa cells surface-

stained with DiDTM (Vybrant1, Invitrogen), and L929 cells

surface-stained with fluorescein diacetate (FDA) were used as

three typical example applications to evaluate adaptable image

segmentation and analysis tools selected from our previous

research. Image segmentation methods that are known to

work with fluorescent cells, with parameters that can be used

to steer and control the segmentation result as described

above, were therefore selected and partly extended.

From the image-processing point of view, selected seg-

mentation tasks for phalloidin Alexa 568-stained and DiD-

stained HeLa cells are particularly challenging. Depending on

the confluence, HeLa cells have different morphological types.

Tested samples that are highly confluent may result in intercel-

lular overlapping among adjacent cells. In these conditions,

even experienced users are unable to distinguish some of the

cells unambiguously and cannot outline the boundaries due to

the overlaps. Indistinguishable cells of this type were excluded

from the ground truth. Overlapping cells with boundaries that

could be determined unambiguously were annotated as over-

lapping cells (Fig. 2).

Figure 2. Example images of the various original datasets (A, C, E) and the corresponding manually annotated ground truth (B, D, F)

obtained from an experienced user. The actin cytoskeleton of the HeLa cells was labeled with phalloidin Alexa 568 (A, B), the cytoplasmic

membrane of the HeLa cells was labeled with DiDTM (C, D), and the L929 cells were stained with the viability marker fluorescein diacetate

(FDA) (E, F). The scale bars correspond to 10 lm in A and B (original magnification 363) and 20 lm in C—F (original magnification 320).
From the point of view of automated image processing, these example images raise several challenges: segmentation of the thin exten-

sions of the cells overlapping with other cells (e.g., the cell indicated by an arrow in A); the dotted structure of the phalloidin Alexa 568-

stained cytoskeleton; and the dark areas resulting from the absence of the fluorescent marker in the cell nuclei (A). In addition, the cells dif-

fer widely in terms of size, morphology, and intensity.
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A further challenge is created by the phalloidin Alexa 568

staining used in this experiment, which is not equally distribu-

ted inside the cytoplasm and shows dotted structures (Fig.

2A). The segmentation of L929 cells also poses a challenge, as

the cells depicted in this dataset have very large morphological

differences, with some showing a compact circular shape and

others a triangular or bipolar morphology (Fig. 2C). Finally,

there are always a certain number of apoptotic cells, which

generally show a small, circular morphology with relatively

increased intensity signals (Fig. 2).

RELATED RESEARCH AND STATE OF THE ART

As mentioned above, many image-processing methods

have been proposed during the last 10 years for segmentation

of single cells in fluorescence images, but most of these are

dedicated to very specific and narrow applications in the field

of microscopic image analysis. A broad overview of segmenta-

tion techniques for fluorescence images is presented by Restif

(8).

Many different approaches have been proposed in the

area of single-cell image segmentation in fluorescence micro-

graphs. The most basic methods include local and adaptive

thresholding (1,9–12), based on Otsu’s thresholding approach

(13), as well as region-growing methods. Due to the relative

homogeneity of the statistical properties of the foreground

and background in such images, these approaches are suitable

for delineating single cells and cell groups in fluorescence

micrographs. However, they are not able to split and separate

adjacent and overlapping cells. For robust detection, segmen-

tation, and separation of clustered cell nuclei stained with 4,6-

diamino-2-phenylindole (DAPI), Nandy et al. (14) proposed

an algorithm based on calculating the gradient magnitude and

direction, k-means clustering, weighted distance transform

(DT), and dynamic programming (DP). Du and Dua (15)

compared different clustering approaches, including the ex-

pectation-maximization (EM) algorithm, k-means, threshold-

ing, and global minimization for active contours, for real and

synthetic fluorescent images. To separate clustered cell nuclei

in peripheral blood and bone-marrow preparations in fluores-

cence in situ hybridization (FISH) images, Malpica et al. (16)

used the watershed transform (WT) in combination with a

level set (LS) approach. A similar chain of methods (known as

‘‘BlobFinder’’) for delineating a variety of cells has recently

been proposed by Allalou and Wählby (1); the method consists

of thresholding, DT, and WT and also allows user interaction

at any time. Wählby et al. have also described a multiple-step

algorithm for segmentation of Chinese hamster ovary (CHO)

cells stained with calcein in fluorescence images (17). After ini-

tial segmentation using a WT, small regions are merged or

deleted. Based on a statistical classification, larger image

regions denoting possible cell aggregates are tested for splitting

into smaller cell-like regions. On the basis of these studies

(17,18), Wang et al. (5) suggested a delineation scheme for

HeLa cells based on binarization, cell detection using gradient

vector fields (GVFs), and seeded WT-based segmentation.

Zhu et al. (19) used an automatic quantification method ap-

plicable to fluorescence imagery using local maximums to

identify labeling targets and watershed segmentation to define

their boundaries.

Another approach often used to delineate and separate

cells in fluorescence micrographs is mathematical morphology

(20), as in the studies by Metzler et al. (21,22), who used a

morphological multiple-scale approach to separate mouse

fibroblasts. Zhang et al. (23) used multiple-stage morphologi-

cal operations to extract cell boundaries. Wang et al. (5)

recently extended the morphological approach for the analysis

of bacterial, yeast, and human cells using what are known as

nonlinear or hybrid range filters (HRFs) with circular struc-

turing elements.

For micrograph segmentation, active contours (snakes)

and level set approaches are increasingly being regarded as the

state of the art, and they have recently been used for various

applications. Segmentation of fluorescence-stained HeLa cells

using a stochastic active contour scheme (STACS), for exam-

ple, has been suggested by Srinivasa et al. (24,25). Specifically,

as HeLa cells do not show any real edges and each cell has a

different shape, only an external, region-based and an internal,

curvature-based force are applied to develop the contour.

Contour initialization is obtained from the DNA information

depicted in a neighboring channel. The STACS method was

recently enhanced using combined region-growing and multi-

ple-scale approaches (24). Möller at al. used a snake approach

with an extended-energy function for segmentation of mono-

verlapping cells stemming from the human hepatoma cell line

(HUH7 cells) (26), while Ersoy et al. (27) used level set-based

multiple-phase fast graph partitioning active contours (Fas-

tGPAC), a method that is an extension of graph partitioning

active contours (GPAC).

Yu et al. (28) have suggested an approach based on

enhanced level set (also known as geometric active contours)

segmentation, in which detected cell nuclei are used to initia-

lize the level set function. A dynamic watershed approach was

also used to prevent merging and splitting of cell segments.

This approach was recently enhanced (29) by employing what

is known as an evolving generalized Voronoi diagram algo-

rithm, incorporating image intensity and geometric informa-

tion. Cheng and Rajapakse (30) proposed a segmentation

method for neuronal as well as Drosophila cell fluorescence

micrographs with a level set function in which the image

energy is defined using intensity variances inside and outside

of the contour. The contour is initialized using a watershed

approach. With regard to live cell imaging, in which the aim is

to track vital cells, Dzyubachyk et al. (31,32) have proposed a

level set-based cell segmentation (and tracking) method based

on a model evolution approach. According to the authors, this

approach ensures a high quality of segmentation with widely

varying object intensities.

An approach based on artificial neural networks (ANNs)

for automatic detection, localization, and segmentation of flu-

orescence micrographs has been presented by Nattkemper

et al. (33–35). This method applies image patches of 15 3 15

pixels for the training cycles. Approximately a quarter of the

training patches consist of preclassified and hand-labeled

image patches depicting fluorescent cells, while the remaining
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training regions are randomly chosen background image

regions without cells. For the architecture of the ANN, both a

local linear map (LLM) as a variant of the self-organizing map

(SOM) and also a multilayer perceptron (MLP) with a back-

propagation learning scheme have been described. Both

approaches are effective in learning object recognition tasks

from small training sets. The two architectures yield what are

known as confidence maps, describing the probability of the

occurrence of a cell. To eliminate false-positive cells, these con-

fidence maps are then further processed in successive image-

processing steps.

The aim with almost all of these approaches is to provide

solutions for only a single problem, such as analysis of mitotic

phenotypes of human cells (9,10), human hepatoma cells (26),

characterization of protein-protein interactions (11), agonist-

induced translocation of green fluorescent protein (GFP) Rac1

to cellular membranes (18), or delineation of HeLa cells

(4,27,36), blood and bone-marrow nuclei (16), CHO cells

(17), mouse neuroblastoma neural cells (28), mouse fibro-

blasts (21,22), DAPI-stained cervical cell nuclei (12,14), and

synthetically computed cells (15). A universal solution for cell

segmentation and tracking that would be applicable across all

types of cells and stains has therefore yet to be described. Algo-

rithms that work well on one set of images often perform

poorly on another set, due to differences in the features that

are exploited. Among the studies mentioned above, only the

approaches by Allalou and Wählby (1), Wang et al. (5), and

Zhu et al. (19) attempt to cover more than one problem with

the segmentation approach investigated. In addition, studies

comparing the performance of different segmentation

approaches for fluorescence micrographs have the common

drawback that the segmentation ground truth is seldom avail-

able—as in the study by Coelho et al., for example (37). It is

therefore difficult to compare the performance of the various

approaches with the state of the art in this field.

CONTRIBUTION OF THE PRESENT STUDY
As mentioned above, almost all of these segmentation

methods are strongly dependent on specific analytic applica-

tions, so that they cannot be directly reused for other applica-

tions without the effort involved in manual reprogramming.

In addition, when the adaptive segmentation approach

described initially here is used—in which the best segmenta-

tion scheme applicable to a new set of fluorescence images is

selected and its parameters are optimized automatically rela-

tive to previous manual segmentation of a representative

training dataset—not every named segmentation scheme can

be used in this context. In particular, methods that use addi-

tional information (such as initialization schemes) from other

modalities are (not yet) applicable to the method proposed

here. However, as noted by Srinivasa (4) and Wang et al. (5) in

studies that investigated automated segmentation of fluores-

cence micrographs, the watershed algorithm is regarded as one

of the most accurate methods. To evaluate the proposed self-

adapting image segmentation concept, we therefore used the

watershed algorithm (38) and a variant of it known as the

maximum-intensity linking (MIL) approach (39), originally

developed for segmentation of fluorescence-stained stem cells.

All of the segmentation approaches were evaluated using

threefold cross-validation on three reference image datasets

depicting 261, 817, and 1,333 fluorescence-stained cells, with

corresponding ground-truth data.

MATERIALS AND METHODS

Image Data

Although several image reference datasets of fluorescence

images are available for public research purposes, such as the

Yeast Protein Localization database (40,41), the Yeast Resource

Center Public Image Repository (42), the Distributed Data-

base for BioMolecular Images (43), and the database for dy-

namics and localizations of endogenous fluorescence-tagged

proteins in living human cells (44), none of these repositories

serves our purposes. Specifically, to the best of our knowledge

none of these databases has a reference annotation for the cells

depicted, and none of the prepared and depicted cells are

related to the scope of our ongoing project. In order to obtain

representative fluorescence image datasets applicable for the

present study, therefore, three datasets were created. Table 1

presents a detailed overview of them.

� The first dataset contained 261 HeLa cells that were stained

with phalloidin Alexa 568 (excitation wavelength 568 nm)

Table 1. Overview of the image datasets used for the experiments

CELLTYPE

HELA CELLS HELA CELLS L929 CELLS

Staining Phalloidin Alexa 568 DiDTM FDA

Magnification 633 oil immersion 203 oil immersion 203 air

1.3 NA 0.8

0.1 lm/pixel 0.32 lm/pixel

Microscope Zeiss Axiovert Zeiss Axiovert Olympus IX71 inversion

Image size 1,3883 1,040 pixels 1,3883 1,040 pixels 1,3763 1,032 pixels

Images 60 30 10

Manually annotated cells 261 817 1,333

FDA, fluorescein diacetate.
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to detect the F-actin cytoskeleton. For image acquisition, a

Zeiss Axiovert microscope was used equipped with a 633
objective, an AxioCam, and AxioVision Capture software

(Carl Zeiss MicroImaging, Jena, Germany).
� The second dataset consisted of 817 HeLa cells that were

stained with DiD (excitation wavelength 644 nm), an inter-

mittent cell membrane marker. To capture these images, a

Zeiss Axiovert microscope was used in combination with a

203 objective, an AxioCam, and AxioVision software (Carl

Zeiss MicroImaging, Jena, Germany).
� The third dataset consisted of mouse-derived L929 cells

stained with fluorescein diacetate (FDA; excitation wave-

length 488 nm). This dataset contained 1,333 cells. The data

were acquired using an Olympus IX71 inverted microscope

(Olympus Germany, Hamburg, Germany) equipped with a

203 air objective, and the images were captured and stored

with the AnalySISTM software package.

To obtain the necessary ground-truth data for training

and evaluation of the proposed adaptive segmentation

scheme, cells were manually annotated by an experienced user.

It was extremely important that only those cells were anno-

tated that could clearly be distinguished and outlined by the

operator and were fully visible in the field of view. To allow

assessment of intraobserver and interobserver variability, 10%

of all three datasets were randomly selected in order to reduce

the amount of data. Each subset was then annotated a second

time by a second user.

To provide optimal ground-truth segmentation data, a

Wacom Cintiq 21UXTM digital drawing board (Wacom Eur-

ope, Krefeld, Germany) was used for the annotation process.

This choice of input device for manual ground-truth annota-

tion was based on a previous internal study in which the preci-

sion of interactive segmentation devices such as a Wacom

board was compared with a conventional mouse and touch-

screen device.

All three datasets will be made publicly available on the

publication of the present study and can be obtained from the

authors for comparative studies.

Methods Overview

Based on the observations by Srinivasa (4) and Wang

et al. (5), several variations of watershed segmentation were

used in the present study and were automatically adapted to

the segmentation of fluorescence micrographs of different

cell types. The first method is known as maximum-intensity

linking (39) (see below); it is a graph-based variant of the

watershed approach. The second method is an extension of

MIL using an improved image preprocessing chain that is

capable of handling the dotted structure of phalloidin Alexa

568 staining for F-actin in particular. In addition, the pro-

posed preprocessing chain combines flexibility and a low

dimensional parameter space (see the section on improved

MIL below). The third and fourth algorithms investigated

use different versions of an efficient preprocessing scheme

that consists of a noise reduction step, mathematical mor-

phology, and a threshold operation and is capable of separ-

ating touching or overlapping cells using the watershed

transform (see below).

Maximum-Intensity Linking (MIL)

The MIL algorithm (39), which was originally devel-

oped for segmentation and separation of stem cells, exploits

the fact that the intensity of fluorescence-stained cells usually

decreases from the core to the boundary. The method can

be subdivided into three steps. In order to remove tiny arti-

facts and noisy background pixels, a preprocessing step

smoothes the image using a Gaussian filter kernel. Back-

ground and foreground pixels are separated by a global

threshold obtained using Otsu’s threshold approach. In a

second step, the individual cells are segmented and separated

by interpreting the image as a directed graph structure, in

which pixels represent nodes linked to the brightest pixel in

their immediate (8-connected) neighborhood. This results in

a set of trees whose roots correspond to local intensity maxi-

mums in the image, in which each local image maximum

relates to a tree. A color-coded example of this type of tree

structure is shown in Figure 3B. Segmentation of cells can

be obtained by adding corresponding successors to the

source node associated with a specific cell. In the third step,

cell regions are merged to reduce oversegmentation. For a

more detailed description of the MIL method and the mer-

ging step, see Elter et al. (39). As can be seen in Figure 3C,

some touching cells can be separated using this approach,

but some oversegmentation and undersegmentation artifacts

still remain.

Figure 3. Example of image analysis using maximum-intensity linking (MIL). (A) A representative image with fluorescence-stained HeLa

cells from the first dataset. (B) Intensity-coded visualization of the graph directions. (C) The MIL result. In this example, some large cells

were correctly separated (C, solid circle), but there were also oversegmented and undersegmented cells (C, dotted circles). The scale bar

corresponds to 10 lm (original magnification 363).
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Improved Maximum-Intensity Linking

When applied to the segmentation of HeLa cells with

phalloidin Alexa 568 staining as used in the present study,

there are two major drawbacks with MIL. The first is caused

by intracellular staining, in which the dotted structure of the

cytoplasm leads to strong oversegmentation artifacts, as each

local maximum in the graph structure is segmented as a new

cell. This effect can partially be fixed by merging regions in

the postprocessing step. To reduce this type of oversegmenta-

tion, local maximums can be removed by an additional

strong Gaussian smoothing in the preprocessing step. How-

ever, this smoothing also involves a loss of segmentation ac-

curacy, as the boundaries between adjacent cells are also

blurred. The second drawback is caused by the absence of

dye in the nucleus, which leads to decreased intensities in

comparison with the intensity of the surrounding cell (Fig.

2A). To reduce these problems, a chain of preprocessing steps

was developed.

The dotted structure in the micrographs resulting from

the phalloidin Alexa 568 marker can be reduced by carrying

out morphological opening operations (45) with a flat circu-

lar structuring element of radius r. To separate individual

cells from the image background, k-means clustering (46) is

applied, where k denotes the number of clusters. Instead of

performing clustering on the image intensity value, the histo-

gram is used to accelerate this algorithm. After the clustering

has been performed, a threshold limit is set by regarding the

darkest cluster as background and everything else as fore-

ground. In comparison with competing thresholding meth-

ods, this provides a very flexible method, as the number of

clusters may vary while a small parameter space is preserved

(usually 2 � k\ 10). As the MIL builds a tree for each local

maximum, the procedure works best on cells with intensity

values that decrease from the core to the boundary. A dis-

tance transform is therefore used on the binary image

obtained from clustering, yielding an input image for the

MIL. The intermediate steps in the improved MIL are illu-

strated in Figure 4.

Improved Watershed and Watershed by

Reconstruction

The third algorithm in the present study uses the

watershed transform (38), which is more widely established in

the literature than the MIL described above for segmentation

of cells. The previously described combination of smoothing,

mathematical morphology (45) and k-means clustering (46) is

used for preprocessing and thresholding. An improved

watershed algorithm is then applied for splitting of the cells.

The watershed algorithm interprets the gradient strength as

relief in the image. Successive flooding of the basins is then

performed on this relief. During this flooding process, water-

sheds are formed between adjacent catchment basins. In addi-

tion, knowledge about the typical size of the displayed cells is

incorporated by merging adjacent catchment basins. This

makes it possible to define a minimum size for each cell. This

improved watershed method is thus capable of reducing over-

segmentation artifacts.

In principle, arbitrary images can be used as input for the

watershed algorithm. In the literature, the gradient image is

used, as well as other preprocessed variants of the fluorescence

image. The present implementation uses three different input

images:

� The fluorescence image, which is blurred with a Gaussian

filter using standard deviation r and enhanced by a mor-

phological opening with radius r.
� A gradient-filtered version of the fluorescence image. To

estimate the gradient, the differential of a Gaussian filter

with standard deviation r is used.
� A distance-transformed fluorescence image that has been

preprocessed with morphological opening and binarized by

k-means clustering.

In the current implementation, determination of the best

input image for the watershed is part of the optimization pro-

cess. This implies usage of a further parameter, denoted as m.

The watershed-by-reconstruction procedure is imple-

mented in the same way as the improved watershed algorithm.

Figure 4. Example of the workflow with the improved maximum-

intensity linking (MIL) method. (A) The original image, showing

HeLa cells stained with phalloidin Alexa 568. (B) The image after

morphological opening with a circular flat structuring element.

(C) The method of k-means clustering was used to assign the pix-
els into k clusters (k 5 5). (D) The darkest cluster was assumed to

represent the background, using a threshold of s 5 1. (E) A dis-

tance transform is applied to transform the image into a more

suitable representation for the MIL approach. (F) The final seg-

mentation result achieved with the improved MIL method is

shown. The scale bar corresponds to 10 lm (original magnifica-

tion 363).
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In this case, the morphological opening is replaced by a mor-

phological opening by reconstruction (45) in the preproces-

sing chain as well as for the watershed input images.

Parameter Optimization and Separation of Data

The segmentation performance of the methods described

depends on way in which the free parameters are selected. To

avoid a biased set-up of the different segmentation algorithms,

the parameters for all of the methods are automatically opti-

mized using a genetic algorithm (GA) (47). Threefold cross-

validation was used to separate training from testing data. For

this cross-validation, each image database was randomly split

into three equal-sized image sets in which two-thirds of the

images were used to optimize the parameters and the remain-

ing third was used for testing. This was done with all three

possible combinations of the training and testing data.

For the present study, the free steady-state genetic algo-

rithm implementation described by Wall, developed at the

Massachusetts Institute of Technology, was used (48). From a

genetic algorithm point of view, a parameter set is represented

by an individual, whereas a specific parameter can be inter-

preted as an allele. When mutation and cross-over operations

are performed (47), alleles are changed and a new individual is

formed. A certain number of individuals (10 in the present

study) were combined to form a new generation of indivi-

duals. A steady-state genetic algorithm was used, as it is able

to preserve a certain percentage (20% in the present study) of

the best individuals contained in the previous generation.

Twenty generations of individuals were computed for the pres-

ent evaluation. The parameters required for optimization are

summarized in Table 2 for all of the segmentation methods

evaluated.

Performance Measurement

In the proposed optimization scheme, a performance

measurement has to assess the quality achieved by a specific

segmentation method in relation to a manually annotated

ground truth. An extended overlap performance measure-

ment is therefore used (49) that describes the three major

aspects of segmentation—namely, the amount of overlap as

well as the amounts of oversegmentation and undersegmen-

tation.

The area overlap measure (AOM; also known as the Jac-

card similarity measure), measuring the ratio of the intersec-

tion area of S and T and the joint area of S and T:

P1 ¼ jS \ T j
jS [ T j :

The ratio of the undersegmented area to the ground-truth

area T:

P2 ¼ jTnðS \ TÞj
jT j :

The ratio of the ground-truth and the segmented area S,

defined as oversegmentation:

P3 ¼ jSn ðS \ TÞj
jSj :

Depending on the way in which they are defined, the three

performance measurements yield values between 0 and 1;

hence, P1, P2, and P3 [ [0, 1]. A combined performance mea-

surement P [ [0,1] can therefore be defined by a linear combi-

nation of these terms. By assigning different weighting factors

to the individual terms, it is possible to control the influence

of each individual term P1, P2, and P3. This makes it possible

to reduce oversegmentation, for example, by assigning a larger

weighting factor to P3. As neither oversegmentation nor

undersegmentation was preferred for the present application,

equal weighting factors were assigned to each of the three cri-

teria. The combined performance measurement P was there-

fore defined as:

P ¼ P1 þ ð1� P2Þ þ ð1� P3Þ
3

:

A qualitative segmentation evaluation can be performed

using P. The numbers of erroneously detected cells and

missed cells are consequently irrelevant. In order to judge

the segmentation quantitatively as well as qualitatively, the

hit rate is included in the measurement. Assuming that

the segmentation results contain n cells and the ground

truth contains m cells, n:m mapping has to be carried out

in the following way. First, the best-matching cell — i.e.,

the cell with the largest P value — is searched for among

the segmented cells for each ground-truth cell. The per-

formance of such an optimal pair of cells is denoted as

Pi
best with i [ {1,2,. . .,m}. Each segmented cell may only

be assigned to one ground-truth cell. The number of cor-

rectly identified cells (Pi
best [ 0) is then denoted as NTP

(‘‘true positives’’). NFP denotes the number of oversegmented

Table 2. Free parameters and range of the different segmentation

algorithms that are automatically optimized by the genetic algo-

rithm

METHOD PARAMETER RANGE

MIL a [1, 2, . . ., 20]

s [1, 2, . . ., 255]

Improved MIL k [2, 3, . . ., 10]

r [5, 6, . . ., 20]

a [1, 2, . . ., 20]

Improved watershed r [5, 6, . . ., 20]

r [1, 2, . . ., 20]

Conditioning

method

[0, 1, 2]

Watershed by

reconstruction

r [5, 6, . . ., 20]

r [1, 2, . . ., 20]

Conditioning

method

[0, 1, 2]

MIL, maximum-intensity linking.
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cells (‘‘false positives’’). These are cells that have been

wrongly detected, as they are not contained in the ground-

truth annotations. The number of cells that were not found

at all is denoted as NFN. Defining the accuracy as

A ¼ NTP

NTPþNFPþNFN
leads to the following performance mea-

surement:

PPunished ¼ 1

NTP þ NFP þ NFN

Xm

i¼1

Pbest
i :

Maximization of PPunished is equivalent to maximizing the

overlapping of the segmentation result while minimizing the

numbers of oversegmented and missed cells.

Statistical Analysis

The segmentation methods were analyzed using mixed

linear models with the segmentation performance measure P

(defined above) as outcome, segmentation method as fixed

effect, and ground-truth cells as random effect. These models

take into account the fact that each ground-truth cell is used

by several segmentation methods. For each dataset a separate

model was performed. The segmentation methods were com-

pared with post hoc tests using the Tukey–Kramer method.

All of the tests were two-sided, and a p value\0.05 was

considered statistically significant. All of the statistical analyses

were carried out using SAS (version 9.2; SAS Institute Inc.,

Cary, NC).

Figure 5. Comparison of the segmentation performance using the segmentation methods described and threefold cross-validation for the

different datasets. (A) The combined segmentation performance P. (B) The hit rate. It should be noted that only 10% of the data were used

to calculate interobserver and intraobserver variability.
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RESULTS

For fair comparison of the segmentation methods pre-

sented, their optimal parameters are determined using the

genetic algorithm described above. In order to evaluate the

qualitative and quantitative segmentation performance, the

combined segmentation performance P and the accuracy A

Figure 6. Direct comparison of various segmentation approaches; representative examples of three data sets.
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were analyzed. The results show that the segmentation per-

formance of the MIL method can be improved using the pro-

posed preprocessing routines. Further improvement is

obtained by using the watershed transform. The watershed-

by-reconstruction method can improve performance for the

phalloidin 568-stained HeLa cells, while performance deterio-

rates when segmenting DiD-stained HeLa cells (Fig. 5). A vis-

ual comparison of the segmentation results (Fig. 6) confirms

that the segmentation performance of the watershed trans-

form is superior to that of the MIL algorithm.

Table 3 shows p values for comparisons of the segmenta-

tion methods. Testing whether the performance of the MIL

method is significantly different from the improved MIL

methods yields p\ 0.0001 on any dataset except for the L929

cells (p 5 0.64). The tests also show that the watershed meth-

od’s segmentation performance is different from the perform-

ance of the improved MIL method on all datasets (p \
0.0001), whereas comparison of watershed and watershed-by-

reconstruction does not show any significant differences (p[
0.05).

Analyzing the watershed method in more detail, we

addressed the question of the optimal input image for the

watershed transform. An additional parameter was therefore

incorporated that determines whether the preprocessed fluo-

rescence image, the gradient image, or the distance-trans-

formed image is used as input for the watershed algorithm.

This parameter was also evaluated for each of the three differ-

ent combinations of training and testing dataset. The values

listed in Table 4 confirm that the best input image depends on

the dataset used, but the gradient image did not outperform

competing methods on any dataset.

All of the algorithms presented were developed in relation

to performance and efficiency. A runtime comparison (Table

5) showed that all algorithms can segment a 1.3 megapixel

image in less than 2 s using a 2.66-GHz processor.

DISCUSSION

In this study, several watershed-based image segmenta-

tion methods (MIL, extended MIL, improved watershed, and

watershed by reconstruction) were evaluated with regard to

their usability in an adaptive segmentation framework (3) for

fluorescence-stained cells. A key issue in the selection of these

methods was their applicability for the segmentation of differ-

ent types of fluorescence-stained cells. In addition, the param-

eter space had to be kept small while maintaining sufficient

flexibility to adapt to various cell types and stains, making the

methods described suitable for the automated parameter opti-

mization process. As a result of the automatic parameter opti-

mization, a runtime of less than 2 s is required for a typical

image with a size of 1.3 megapixels.

These results and the corresponding statistical tests

clearly demonstrate that the performance of the MIL method

can be improved using the proposed flexible preprocessing

routine for most datasets. Using the watershed transform-

based segmentation routine can significantly improve per-

formance for all datasets. Incorporating morphological recon-

struction operators also improves performance on most data-

sets, but these differences turned out to be not significant.

Analysis of the optimal preprocessed input image for the

watershed method (Table 4) indicates that this parameter

depends on the present dataset as well as on the algorithm

used. It was notable that the gradient image did not outper-

form the competing images on any dataset. These observations

are consistent with the findings reported by other groups

(1,5,17,18,36) using varying input images for the watershed

transform.

The results show that all evaluated segmentation methods

can be optimized for the application on individual data sets

using a genetic algorithm, hence increasing the performance

measurements. Nevertheless, it can also be seen, that with ris-

ing complexity of the image data (increasing number of

touching and overlapping cells, variations and quality of stain-

ing, number of cells), a limit is reached in the methodology.

Analysis of Figure 6 shows that many errors occur in very

Table 3. Comparison of segmentation methods for the different

datasets (mixed linear models)

MIL/IMPROVED

MIL

IMPROVED

MIL/WATERSHED

WATERSHED/

WATERSHEDWITH

RECONSTRUCTION

HeLa (DiD) \0.0001 \0.0001 0.85

HeLa

(phalloidin

568)

\0.0001 \0.0001 0.60

L929 (FDA) 0.64 \0.0001 0.90

p values for Tukey-Kramer post hoc tests are shown.
MIL, maximum-intensity linking.

Table 4. Preprocessing steps for the watershed transform achiev-

ing the best segmentation performance after parameter optimiza-

tion for each of the specific methods

L929 (FDA) HELA (DID) HELA (PHALLOIDIN)

Improved watershed FL Distance Distance

Watershed by

reconstruction

FL Distance FL

‘‘FL’’ indicates that the watershed transform is directly per-

formed on the original fluorescence image, whereas ‘‘distance’’

shows that the distance-transformed image is used as the optimal

input image.

Table 5. Runtime comparison of nonparallelized implementa-

tions of the methods described

MIL

IMPROVED

MIL

IMPROVED

WATERSHED

WATERSHED BY

RECONSTRUCTION

Runtime (s) 1.3 1.5 1.4 1.5

The time required for segmentation of 10 selected images

(with 1,376 3 1,032 pixels) was measured and averaged on an

Intel Core 2 Duo, 2.66 GHz.
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complex scenarios that are challenging even for experienced

biologists.

CONCLUSIONS

This study outlines a framework for the segmentation of

varying cell types based on variations of the watershed trans-

form, combined with an efficient preprocessing routine and

automatic parameter optimization using a genetic algorithm.

The analyses show that the segmentation schemes evaluated

can be adapted effectively to different stains and cell types.

Following an automatic adaptation step, an ideal combination

of preprocessing methods and the watershed transform can

thus be applied robustly to micrographs with the same prepa-

ration and cell stains. However, if a high degree of accuracy is

required, some interactive correction steps are needed for

more complex scenarios, due to an inability to carry out seg-

mentation of overlapping cells. Hence, in order to increase the

performance further under such complex side conditions,

model- based segmentation routines are needed, which incor-

porate prior knowledge about the size, form and appearance

of the cells to be segmented.
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