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¢ Abstract

Interpreting images from fluorescence microscopy is often a time-consuming task with
poor reproducibility. Various image processing routines that can help investigators eval-
uate the images are therefore useful. The critical aspect for a reliable automatic image
analysis system is a robust segmentation algorithm that can perform accurate segmen-
tation for different cell types. In this study, several image segmentation methods were
therefore compared and evaluated in order to identify the most appropriate segmenta-
tion schemes that are usable with little new parameterization and robustly with differ-
ent types of fluorescence-stained cells for various biological and biomedical tasks. The
study investigated, compared, and enhanced four different methods for segmentation
of cultured epithelial cells. The maximum-intensity linking (MIL) method, an
improved MIL, a watershed method, and an improved watershed method based on
morphological reconstruction were used. Three manually annotated datasets consisting
of 261, 817, and 1,333 HeLa or L1929 cells were used to compare the different algo-
rithms. The comparisons and evaluations showed that the segmentation performance
of methods based on the watershed transform was significantly superior to the per-
formance of the MIL method. The results also indicate that using morphological open-
ing by reconstruction can improve the segmentation of cells stained with a marker that
exhibits the dotted surface of cells.  ©2011 International Society for Advancement of Cytometry

Key terms
image analysis; cell segmentation; optimization; genetic algorithm; watershed; fluores-
cence imaging; evaluation

THE interpretation of fluorescence micrographs plays an important role in the anal-
ysis of cellular events such as cell growth and division, cell death, apoptosis, intercel-
lular communication, and microbial interactions with host cells. For statistical rea-
sons, typical experiments in this field usually require detection and visual assessment
of at least 100 individual specimens, which are most often prepared using several
dyes and antibodies.

The tasks involved in analyzing such images typically include detection, selec-
tion, segmentation, measuring, and counting cells and cellular interactions. Manual
analysis of experimental samples of this type is possible when there are only a few
cells and images. When larger numbers of images, cells, or events are to be analyzed,
however, the task becomes extremely tedious, repetitive, and time-consuming (1).
Specifically, as stated by Vidal et al. (2): “Segmentation is often the major bottleneck
in clinical applications—it takes a long time and the results are often hard to repro-
duce because of the user involvement.” This is most often due to a lack of attention,
and biased interpretation is also possible. Experimental results of this type are there-
fore usually hard to reproduce in intralaboratory and interlaboratory experiments.
There is a strong need for objective image analysis tools in order to increase the
reproducibility and effectiveness of this type of image-based evaluation. Unfortu-
nately, hardly any generally applicable sets of image-processing methods or tools are
available to support leading-edge medical and biomedical research—sets of tools that
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Figure 1. The building blocks of an adaptive segmentation scheme (see text for explanation). Reproduced with permission from Witten-

berg et al. (3).

could be adopted on the fly for frequently changing analytical
tasks for fully or partly automated analysis of micrographs (3).
As Srinivasa noted (4), “While there has been an increasing
effort to automate analysis of biological images, tools to meet
the various challenges posed by specific applications in this
area are still in their infancy” Most image analysis and inter-
pretation in this field is therefore still being done manually.

On the other hand, a strong background in automated
image processing and image interpretation is needed in order
to adapt available image analysis tools to the desired task, or
to write new scripts in image-processing toolboxes. A survey
of recent publications in the field shows that the state of the
art for fully automated or interactive micrograph image analy-
sis involves two different approaches, from opposite direc-
tions. On the one hand, there are knowledge-driven, top-
down methods that are dedicated to very specific and narrow
applications in the field of microscopic image analysis (as
detailed in the following section here). This observation was
recently supported by Wang et al. (5), who state that
“depending on the cells being segmented ... various existing
algorithms are available. A universal solution to cell segmenta-
tion ... applicable across cell types has yet to be described.”
Specifically, due to the differing characteristics of the cell types
to be measured and assessed, image-processing methods appli-
cable to one set of images and cells most often perform poorly
on another set. On the other hand, there are also several data-
driven, procedure-oriented image-processing frameworks and
toolboxes available, which can be applied to the analysis of
micrographs but are usually not dedicated to any specific
application.

This observed mismatch—the known and still unsolved
difficulty of describing the high-level semantics of cells and
cellular interactions in the field of medicine and biology using
adequate image analysis methods or low-level image-based
feature analysis—is also known as the “semantic gap” (6). In
the field of computer vision research, Garbay, for example, has
also noted this gap between the symbolic apprehension of
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high-level concepts (such as cells or cellular interactions) and
their concrete instantiation in images (7). To bridge this
semantic gap between analytical issues in the interpretation of
micrographs by users, on the one hand, and the consequent
(frequently changing) sets of image-processing procedures
required on the other, we recently suggested using an image
analysis approach (3) (Fig. 1).

Using fluorescence-stained HelLa cells as a typical exam-
ple of the analysis of microbial effectors in host cells, the steps
involved in the proposed adaptive image analysis scheme are
as follows:

® On the basis of a small but representative set of reference
images (step 1),

® An interactive segmentation (step 2) is made by a user, deli-
neating and labeling the objects of interest, in this case, cell
plasma (Fig. 2).

e The manually segmented cells are then described as so-
called “ground truth” in a machine-readable manner (step
3).

e Using the annotated reference image data (step 1) and the
formal image description (step 3) as input data, a so-called
“segmentation engine” is applied and optimized on a set of
parametric segmentation methods (step 4).

® As a result, the optimal segmentation parameters for the
training set are obtained (step 5).

® Based on these parameters (step 5), further fluorescence
micrographs (step 6) of the same type and image quality
can then be segmented using the trained segmentation
engine (step 7), yielding a set of segmentation objects (step
8) as a result.

OBJECTIVES

Against this background, the aim of the present study was
to compare and evaluate different image segmentation meth-
ods for a variety of fluorescence-stained cells that could be

Segmentation in Fluorescence Micrographs
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Figure 2. Example images of the various original datasets (A, C, E) and the corresponding manually annotated ground truth (B, D, F)
obtained from an experienced user. The actin cytoskeleton of the HelLa cells was labeled with phalloidin Alexa 568 (A, B), the cytoplasmic
membrane of the Hela cells was labeled with DiD™ (C, D), and the L929 cells were stained with the viability marker fluorescein diacetate
(FDA) (E, F). The scale bars correspond to 10 um in A and B (original magnification X63) and 20 um in C—F (original magnification x20).
From the point of view of automated image processing, these example images raise several challenges: segmentation of the thin exten-
sions of the cells overlapping with other cells (e.g., the cell indicated by an arrow in A); the dotted structure of the phalloidin Alexa 568-
stained cytoskeleton; and the dark areas resulting from the absence of the fluorescent marker in the cell nuclei (A). In addition, the cells dif-

fer widely in terms of size, morphology, and intensity.

incorporated into the segmentation engine described above, as
core methods from which a selection can be made. Specifically,
Hela cells stained intracellularly with Alexa Fluor®™ 568 phal-
loidin (Invitrogen, Darmstadt, Germany), HeLa cells surface-
stained with DiD™ (Vybrant‘\“;, Invitrogen), and L1929 cells
surface-stained with fluorescein diacetate (FDA) were used as
three typical example applications to evaluate adaptable image
segmentation and analysis tools selected from our previous
research. Image segmentation methods that are known to
work with fluorescent cells, with parameters that can be used
to steer and control the segmentation result as described
above, were therefore selected and partly extended.

Cytometry Part A e 79A: 933-945, 2011

From the image-processing point of view, selected seg-
mentation tasks for phalloidin Alexa 568-stained and DiD-
stained HeLa cells are particularly challenging. Depending on
the confluence, HeLa cells have different morphological types.
Tested samples that are highly confluent may result in intercel-
lular overlapping among adjacent cells. In these conditions,
even experienced users are unable to distinguish some of the
cells unambiguously and cannot outline the boundaries due to
the overlaps. Indistinguishable cells of this type were excluded
from the ground truth. Overlapping cells with boundaries that
could be determined unambiguously were annotated as over-
lapping cells (Fig. 2).

935



ORIGINAL ARTICLE

A further challenge is created by the phalloidin Alexa 568
staining used in this experiment, which is not equally distribu-
ted inside the cytoplasm and shows dotted structures (Fig.
2A). The segmentation of L929 cells also poses a challenge, as
the cells depicted in this dataset have very large morphological
differences, with some showing a compact circular shape and
others a triangular or bipolar morphology (Fig. 2C). Finally,
there are always a certain number of apoptotic cells, which
generally show a small, circular morphology with relatively
increased intensity signals (Fig. 2).

RELATED RESEARCH AND STATE OF THE ART

As mentioned above, many image-processing methods
have been proposed during the last 10 years for segmentation
of single cells in fluorescence images, but most of these are
dedicated to very specific and narrow applications in the field
of microscopic image analysis. A broad overview of segmenta-
tion techniques for fluorescence images is presented by Restif
(8).

Many different approaches have been proposed in the
area of single-cell image segmentation in fluorescence micro-
graphs. The most basic methods include local and adaptive
thresholding (1,9-12), based on Otsu’s thresholding approach
(13), as well as region-growing methods. Due to the relative
homogeneity of the statistical properties of the foreground
and background in such images, these approaches are suitable
for delineating single cells and cell groups in fluorescence
micrographs. However, they are not able to split and separate
adjacent and overlapping cells. For robust detection, segmen-
tation, and separation of clustered cell nuclei stained with 4,6-
diamino-2-phenylindole (DAPI), Nandy et al. (14) proposed
an algorithm based on calculating the gradient magnitude and
direction, k-means clustering, weighted distance transform
(DT), and dynamic programming (DP). Du and Dua (15)
compared different clustering approaches, including the ex-
pectation-maximization (EM) algorithm, k-means, threshold-
ing, and global minimization for active contours, for real and
synthetic fluorescent images. To separate clustered cell nuclei
in peripheral blood and bone-marrow preparations in fluores-
cence in situ hybridization (FISH) images, Malpica et al. (16)
used the watershed transform (WT) in combination with a
level set (LS) approach. A similar chain of methods (known as
“BlobFinder”) for delineating a variety of cells has recently
been proposed by Allalou and Wahlby (1); the method consists
of thresholding, DT, and WT and also allows user interaction
at any time. Wihlby et al. have also described a multiple-step
algorithm for segmentation of Chinese hamster ovary (CHO)
cells stained with calcein in fluorescence images (17). After ini-
tial segmentation using a WT, small regions are merged or
deleted. Based on a statistical classification, larger image
regions denoting possible cell aggregates are tested for splitting
into smaller cell-like regions. On the basis of these studies
(17,18), Wang et al. (5) suggested a delineation scheme for
HelLa cells based on binarization, cell detection using gradient
vector fields (GVFs), and seeded WT-based segmentation.
Zhu et al. (19) used an automatic quantification method ap-
plicable to fluorescence imagery using local maximums to
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identify labeling targets and watershed segmentation to define
their boundaries.

Another approach often used to delineate and separate
cells in fluorescence micrographs is mathematical morphology
(20), as in the studies by Metzler et al. (21,22), who used a
morphological multiple-scale approach to separate mouse
fibroblasts. Zhang et al. (23) used multiple-stage morphologi-
cal operations to extract cell boundaries. Wang et al. (5)
recently extended the morphological approach for the analysis
of bacterial, yeast, and human cells using what are known as
nonlinear or hybrid range filters (HRFs) with circular struc-
turing elements.

For micrograph segmentation, active contours (snakes)
and level set approaches are increasingly being regarded as the
state of the art, and they have recently been used for various
applications. Segmentation of fluorescence-stained HeLa cells
using a stochastic active contour scheme (STACS), for exam-
ple, has been suggested by Srinivasa et al. (24,25). Specifically,
as HeLa cells do not show any real edges and each cell has a
different shape, only an external, region-based and an internal,
curvature-based force are applied to develop the contour.
Contour initialization is obtained from the DNA information
depicted in a neighboring channel. The STACS method was
recently enhanced using combined region-growing and multi-
ple-scale approaches (24). Moller at al. used a snake approach
with an extended-energy function for segmentation of mono-
verlapping cells stemming from the human hepatoma cell line
(HUHY cells) (26), while Ersoy et al. (27) used level set-based
multiple-phase fast graph partitioning active contours (Fas-
tGPAC), a method that is an extension of graph partitioning
active contours (GPAC).

Yu et al. (28) have suggested an approach based on
enhanced level set (also known as geometric active contours)
segmentation, in which detected cell nuclei are used to initia-
lize the level set function. A dynamic watershed approach was
also used to prevent merging and splitting of cell segments.
This approach was recently enhanced (29) by employing what
is known as an evolving generalized Voronoi diagram algo-
rithm, incorporating image intensity and geometric informa-
tion. Cheng and Rajapakse (30) proposed a segmentation
method for neuronal as well as Drosophila cell fluorescence
micrographs with a level set function in which the image
energy is defined using intensity variances inside and outside
of the contour. The contour is initialized using a watershed
approach. With regard to live cell imaging, in which the aim is
to track vital cells, Dzyubachyk et al. (31,32) have proposed a
level set-based cell segmentation (and tracking) method based
on a model evolution approach. According to the authors, this
approach ensures a high quality of segmentation with widely
varying object intensities.

An approach based on artificial neural networks (ANNs)
for automatic detection, localization, and segmentation of flu-
orescence micrographs has been presented by Nattkemper
et al. (33-35). This method applies image patches of 15 X 15
pixels for the training cycles. Approximately a quarter of the
training patches consist of preclassified and hand-labeled
image patches depicting fluorescent cells, while the remaining

Segmentation in Fluorescence Micrographs
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Table 1. Overview of the image datasets used for the experiments

CELLTYPE

HELA CELLS HELA CELLS 1929 CELLS
Staining Phalloidin Alexa 568 DiD™ FDA
Magnification 63 X oil immersion 20 X oil immersion 20 X air

1.3 NA 0.8
0.1 um/pixel 0.32 um/pixel

Microscope Zeiss Axiovert Zeiss Axiovert Olympus IX71 inversion
Image size 1,388 X 1,040 pixels 1,388 X 1,040 pixels 1,376 X 1,032 pixels
Images 60 30 10
Manually annotated cells 261 817 1,333

FDA, fluorescein diacetate.

training regions are randomly chosen background image
regions without cells. For the architecture of the ANN, both a
local linear map (LLM) as a variant of the self-organizing map
(SOM) and also a multilayer perceptron (MLP) with a back-
propagation learning scheme have been described. Both
approaches are effective in learning object recognition tasks
from small training sets. The two architectures yield what are
known as confidence maps, describing the probability of the
occurrence of a cell. To eliminate false-positive cells, these con-
fidence maps are then further processed in successive image-
processing steps.

The aim with almost all of these approaches is to provide
solutions for only a single problem, such as analysis of mitotic
phenotypes of human cells (9,10), human hepatoma cells (26),
characterization of protein-protein interactions (11), agonist-
induced translocation of green fluorescent protein (GFP) Racl
to cellular membranes (18), or delineation of HeLa cells
(4,27,36), blood and bone-marrow nuclei (16), CHO cells
(17), mouse neuroblastoma neural cells (28), mouse fibro-
blasts (21,22), DAPI-stained cervical cell nuclei (12,14), and
synthetically computed cells (15). A universal solution for cell
segmentation and tracking that would be applicable across all
types of cells and stains has therefore yet to be described. Algo-
rithms that work well on one set of images often perform
poorly on another set, due to differences in the features that
are exploited. Among the studies mentioned above, only the
approaches by Allalou and Wahlby (1), Wang et al. (5), and
Zhu et al. (19) attempt to cover more than one problem with
the segmentation approach investigated. In addition, studies
comparing the performance of different segmentation
approaches for fluorescence micrographs have the common
drawback that the segmentation ground truth is seldom avail-
able—as in the study by Coelho et al., for example (37). It is
therefore difficult to compare the performance of the various
approaches with the state of the art in this field.

CONTRIBUTION OF THE PRESENT STUDY

As mentioned above, almost all of these segmentation
methods are strongly dependent on specific analytic applica-
tions, so that they cannot be directly reused for other applica-
tions without the effort involved in manual reprogramming.

Cytometry Part A e 79A: 933—-945, 2011

In addition, when the adaptive segmentation approach
described initially here is used—in which the best segmenta-
tion scheme applicable to a new set of fluorescence images is
selected and its parameters are optimized automatically rela-
tive to previous manual segmentation of a representative
training dataset—not every named segmentation scheme can
be used in this context. In particular, methods that use addi-
tional information (such as initialization schemes) from other
modalities are (not yet) applicable to the method proposed
here. However, as noted by Srinivasa (4) and Wang et al. (5) in
studies that investigated automated segmentation of fluores-
cence micrographs, the watershed algorithm is regarded as one
of the most accurate methods. To evaluate the proposed self-
adapting image segmentation concept, we therefore used the
watershed algorithm (38) and a variant of it known as the
maximum-intensity linking (MIL) approach (39), originally
developed for segmentation of fluorescence-stained stem cells.
All of the segmentation approaches were evaluated using
threefold cross-validation on three reference image datasets
depicting 261, 817, and 1,333 fluorescence-stained cells, with
corresponding ground-truth data.

MATERIALS AND METHODS

Image Data

Although several image reference datasets of fluorescence
images are available for public research purposes, such as the
Yeast Protein Localization database (40,41), the Yeast Resource
Center Public Image Repository (42), the Distributed Data-
base for BioMolecular Images (43), and the database for dy-
namics and localizations of endogenous fluorescence-tagged
proteins in living human cells (44), none of these repositories
serves our purposes. Specifically, to the best of our knowledge
none of these databases has a reference annotation for the cells
depicted, and none of the prepared and depicted cells are
related to the scope of our ongoing project. In order to obtain
representative fluorescence image datasets applicable for the
present study, therefore, three datasets were created. Table 1
presents a detailed overview of them.

® The first dataset contained 261 HeLa cells that were stained
with phalloidin Alexa 568 (excitation wavelength 568 nm)
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Figure 3. Example of image analysis using maximum-intensity linking (MIL). (A) A representative image with fluorescence-stained Hela
cells from the first dataset. (B) Intensity-coded visualization of the graph directions. (C) The MIL result. In this example, some large cells
were correctly separated (C, solid circle), but there were also oversegmented and undersegmented cells (C, dotted circles). The scale bar

corresponds to 10 um (original magnification X63).

to detect the F-actin cytoskeleton. For image acquisition, a
Zeiss Axiovert microscope was used equipped with a 63X
objective, an AxioCam, and AxioVision Capture software
(Carl Zeiss Microlmaging, Jena, Germany).

® The second dataset consisted of 817 HeLa cells that were
stained with DiD (excitation wavelength 644 nm), an inter-
mittent cell membrane marker. To capture these images, a
Zeiss Axiovert microscope was used in combination with a
20X objective, an AxioCam, and AxioVision software (Carl
Zeiss Microlmaging, Jena, Germany).

e The third dataset consisted of mouse-derived L929 cells
stained with fluorescein diacetate (FDA; excitation wave-
length 488 nm). This dataset contained 1,333 cells. The data
were acquired using an Olympus IX71 inverted microscope
(Olympus Germany, Hamburg, Germany) equipped with a
20X air objective, and the images were captured and stored
with the AnalySIS™ software package.

To obtain the necessary ground-truth data for training
and evaluation of the proposed adaptive segmentation
scheme, cells were manually annotated by an experienced user.
It was extremely important that only those cells were anno-
tated that could clearly be distinguished and outlined by the
operator and were fully visible in the field of view. To allow
assessment of intraobserver and interobserver variability, 10%
of all three datasets were randomly selected in order to reduce
the amount of data. Each subset was then annotated a second
time by a second user.

To provide optimal ground-truth segmentation data, a
Wacom Cintiq 21UX™ digital drawing board (Wacom Eur-
ope, Krefeld, Germany) was used for the annotation process.
This choice of input device for manual ground-truth annota-
tion was based on a previous internal study in which the preci-
sion of interactive segmentation devices such as a Wacom
board was compared with a conventional mouse and touch-
screen device.

All three datasets will be made publicly available on the
publication of the present study and can be obtained from the
authors for comparative studies.

Methods Overview
Based on the observations by Srinivasa (4) and Wang
et al. (5), several variations of watershed segmentation were
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used in the present study and were automatically adapted to
the segmentation of fluorescence micrographs of different
cell types. The first method is known as maximum-intensity
linking (39) (see below); it is a graph-based variant of the
watershed approach. The second method is an extension of
MIL using an improved image preprocessing chain that is
capable of handling the dotted structure of phalloidin Alexa
568 staining for F-actin in particular. In addition, the pro-
posed preprocessing chain combines flexibility and a low
dimensional parameter space (see the section on improved
MIL below). The third and fourth algorithms investigated
use different versions of an efficient preprocessing scheme
that consists of a noise reduction step, mathematical mor-
phology, and a threshold operation and is capable of separ-
ating touching or overlapping cells using the watershed
transform (see below).

Maximum-Intensity Linking (MIL)

The MIL algorithm (39), which was originally devel-
oped for segmentation and separation of stem cells, exploits
the fact that the intensity of fluorescence-stained cells usually
decreases from the core to the boundary. The method can
be subdivided into three steps. In order to remove tiny arti-
facts and noisy background pixels, a preprocessing step
smoothes the image using a Gaussian filter kernel. Back-
ground and foreground pixels are separated by a global
threshold obtained using Otsu’s threshold approach. In a
second step, the individual cells are segmented and separated
by interpreting the image as a directed graph structure, in
which pixels represent nodes linked to the brightest pixel in
their immediate (8-connected) neighborhood. This results in
a set of trees whose roots correspond to local intensity maxi-
mums in the image, in which each local image maximum
relates to a tree. A color-coded example of this type of tree
structure is shown in Figure 3B. Segmentation of cells can
be obtained by adding corresponding successors to the
source node associated with a specific cell. In the third step,
cell regions are merged to reduce oversegmentation. For a
more detailed description of the MIL method and the mer-
ging step, see Elter et al. (39). As can be seen in Figure 3C,
some touching cells can be separated using this approach,
but some oversegmentation and undersegmentation artifacts
still remain.

Segmentation in Fluorescence Micrographs
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Improved Maximum-Intensity Linking

When applied to the segmentation of HeLa cells with
phalloidin Alexa 568 staining as used in the present study,
there are two major drawbacks with MIL. The first is caused
by intracellular staining, in which the dotted structure of the
cytoplasm leads to strong oversegmentation artifacts, as each
local maximum in the graph structure is segmented as a new
cell. This effect can partially be fixed by merging regions in
the postprocessing step. To reduce this type of oversegmenta-
tion, local maximums can be removed by an additional
strong Gaussian smoothing in the preprocessing step. How-
ever, this smoothing also involves a loss of segmentation ac-
curacy, as the boundaries between adjacent cells are also
blurred. The second drawback is caused by the absence of
dye in the nucleus, which leads to decreased intensities in
comparison with the intensity of the surrounding cell (Fig.
2A). To reduce these problems, a chain of preprocessing steps
was developed.

The dotted structure in the micrographs resulting from
the phalloidin Alexa 568 marker can be reduced by carrying
out morphological opening operations (45) with a flat circu-
lar structuring element of radius r. To separate individual
cells from the image background, k-means clustering (46) is
applied, where k denotes the number of clusters. Instead of
performing clustering on the image intensity value, the histo-
gram is used to accelerate this algorithm. After the clustering
has been performed, a threshold limit is set by regarding the
darkest cluster as background and everything else as fore-
ground. In comparison with competing thresholding meth-
ods, this provides a very flexible method, as the number of
clusters may vary while a small parameter space is preserved
(usually 2 < k < 10). As the MIL builds a tree for each local
maximum, the procedure works best on cells with intensity
values that decrease from the core to the boundary. A dis-
tance transform is therefore used on the binary image
obtained from clustering, yielding an input image for the
MIL. The intermediate steps in the improved MIL are illu-
strated in Figure 4.

Improved Watershed and Watershed by
Reconstruction

The third algorithm in the present study uses the
watershed transform (38), which is more widely established in
the literature than the MIL described above for segmentation
of cells. The previously described combination of smoothing,
mathematical morphology (45) and k-means clustering (46) is
used for preprocessing and thresholding. An improved
watershed algorithm is then applied for splitting of the cells.
The watershed algorithm interprets the gradient strength as
relief in the image. Successive flooding of the basins is then
performed on this relief. During this flooding process, water-
sheds are formed between adjacent catchment basins. In addi-
tion, knowledge about the typical size of the displayed cells is
incorporated by merging adjacent catchment basins. This
makes it possible to define a minimum size for each cell. This
improved watershed method is thus capable of reducing over-
segmentation artifacts.

Cytometry Part A e 79A: 933-945, 2011

Figure 4. Example of the workflow with the improved maximum-
intensity linking (MIL) method. (A) The original image, showing
Hela cells stained with phalloidin Alexa 568. (B) The image after
morphological opening with a circular flat structuring element.
(C) The method of k-means clustering was used to assign the pix-
els into k clusters (k = 5). (D) The darkest cluster was assumed to
represent the background, using a threshold of © = 1. (E) A dis-
tance transform is applied to transform the image into a more
suitable representation for the MIL approach. (F) The final seg-
mentation result achieved with the improved MIL method is
shown. The scale bar corresponds to 10 um (original magnifica-
tion X63).

In principle, arbitrary images can be used as input for the
watershed algorithm. In the literature, the gradient image is
used, as well as other preprocessed variants of the fluorescence
image. The present implementation uses three different input
images:

® The fluorescence image, which is blurred with a Gaussian
filter using standard deviation ¢ and enhanced by a mor-
phological opening with radius r.

e A gradient-filtered version of the fluorescence image. To
estimate the gradient, the differential of a Gaussian filter
with standard deviation ¢ is used.

® A distance-transformed fluorescence image that has been
preprocessed with morphological opening and binarized by
k-means clustering.

In the current implementation, determination of the best
input image for the watershed is part of the optimization pro-
cess. This implies usage of a further parameter, denoted as m.

The watershed-by-reconstruction procedure is imple-
mented in the same way as the improved watershed algorithm.
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Table 2. Free parameters and range of the different segmentation

algorithms that are automatically optimized by the genetic algo-

rithm
METHOD PARAMETER RANGE
MIL o (1,2,...,20]
T (1,2, ..., 255]
Improved MIL k [2,3,...,10]
r [5,6,...,20]
o (1,2,...,20]
Improved watershed r [5,6,...,20]
o (1,2,...,20]
Conditioning [0, 1, 2]
method
Watershed by r [5,6,...,20]
reconstruction o [1,2,...,20]
Conditioning [0, 1, 2]
method

MIL, maximume-intensity linking.

In this case, the morphological opening is replaced by a mor-
phological opening by reconstruction (45) in the preproces-
sing chain as well as for the watershed input images.

Parameter Optimization and Separation of Data

The segmentation performance of the methods described
depends on way in which the free parameters are selected. To
avoid a biased set-up of the different segmentation algorithms,
the parameters for all of the methods are automatically opti-
mized using a genetic algorithm (GA) (47). Threefold cross-
validation was used to separate training from testing data. For
this cross-validation, each image database was randomly split
into three equal-sized image sets in which two-thirds of the
images were used to optimize the parameters and the remain-
ing third was used for testing. This was done with all three
possible combinations of the training and testing data.

For the present study, the free steady-state genetic algo-
rithm implementation described by Wall, developed at the
Massachusetts Institute of Technology, was used (48). From a
genetic algorithm point of view, a parameter set is represented
by an individual, whereas a specific parameter can be inter-
preted as an allele. When mutation and cross-over operations
are performed (47), alleles are changed and a new individual is
formed. A certain number of individuals (10 in the present
study) were combined to form a new generation of indivi-
duals. A steady-state genetic algorithm was used, as it is able
to preserve a certain percentage (20% in the present study) of
the best individuals contained in the previous generation.
Twenty generations of individuals were computed for the pres-
ent evaluation. The parameters required for optimization are
summarized in Table 2 for all of the segmentation methods
evaluated.

Performance Measurement
In the proposed optimization scheme, a performance
measurement has to assess the quality achieved by a specific
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segmentation method in relation to a manually annotated
ground truth. An extended overlap performance measure-
ment is therefore used (49) that describes the three major
aspects of segmentation—namely, the amount of overlap as
well as the amounts of oversegmentation and undersegmen-
tation.

The area overlap measure (AOM; also known as the Jac-
card similarity measure), measuring the ratio of the intersec-
tion area of S and T'and the joint area of Sand T

1SN T|
TlsuTl’

Py

The ratio of the undersegmented area to the ground-truth
area T:

_IT\(SN T)|
=

The ratio of the ground-truth and the segmented area S,
defined as oversegmentation:

IS\ (sn )|
TR

Depending on the way in which they are defined, the three
performance measurements yield values between 0 and I;
hence, Py, P5, and P; € [0, 1]. A combined performance mea-
surement P € [0,1] can therefore be defined by a linear combi-
nation of these terms. By assigning different weighting factors
to the individual terms, it is possible to control the influence
of each individual term Py, P,, and P;. This makes it possible
to reduce oversegmentation, for example, by assigning a larger
weighting factor to Ps;. As neither oversegmentation nor
undersegmentation was preferred for the present application,
equal weighting factors were assigned to each of the three cri-
teria. The combined performance measurement P was there-
fore defined as:

_ P+ (1-P)+(1-P)
; :

P

A qualitative segmentation evaluation can be performed
using P. The numbers of erroneously detected cells and
missed cells are consequently irrelevant. In order to judge
the segmentation quantitatively as well as qualitatively, the
hit rate is included in the measurement. Assuming that
the segmentation results contain # cells and the ground
truth contains m cells, n:m mapping has to be carried out
in the following way. First, the best-matching cell — i.e.,
the cell with the largest P value — is searched for among
the segmented cells for each ground-truth cell. The per-
formance of such an optimal pair of cells is denoted as
PPt with i € {1,2,...,m}. Each segmented cell may only
be assigned to one ground-truth cell. The number of cor-
rectly identified cells (P"*' > 0) is then denoted as Npp
(“true positives”). Ngp denotes the number of oversegmented
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Segmentation Performance P for the different datasets
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Figure 5. Comparison of the segmentation performance using the segmentation methods described and threefold cross-validation for the
different datasets. (A) The combined segmentation performance P. (B) The hit rate. It should be noted that only 10% of the data were used

to calculate interobserver and intraobserver variability.

cells (“false positives”). These are cells that have been
wrongly detected, as they are not contained in the ground-
truth annotations. The number of cells that were not found
at all is denoted as Ngn. Defining the accuracy as

_ Nrp i -
A= gNirwy leads to the following performance mea
surement:

1 m
Ppynished = ————— phest,
Nrp + Nep + Nen ; '

Maximization of Ppypishea 1S equivalent to maximizing the
overlapping of the segmentation result while minimizing the
numbers of oversegmented and missed cells.
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Statistical Analysis

The segmentation methods were analyzed using mixed
linear models with the segmentation performance measure P
(defined above) as outcome, segmentation method as fixed
effect, and ground-truth cells as random effect. These models
take into account the fact that each ground-truth cell is used
by several segmentation methods. For each dataset a separate
model was performed. The segmentation methods were com-
pared with post hoc tests using the Tukey—Kramer method.

All of the tests were two-sided, and a p value <0.05 was
considered statistically significant. All of the statistical analyses
were carried out using SAS (version 9.2; SAS Institute Inc.,
Cary, NC).
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Figure 6. Direct comparison of various segmentation approaches; representative examples of three data sets.
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REsuLTS genetic algorithm described above. In order to evaluate the
For fair comparison of the segmentation methods pre- qualitative and quantitative segmentation performance, the
sented, their optimal parameters are determined using the combined segmentation performance P and the accuracy A
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Table 3. Comparison of segmentation methods for the different
datasets (mixed linear models)

Table 5. Runtime comparison of nonparallelized implementa-
tions of the methods described

WATERSHED/

MIL/IMPROVED IMPROVED WATERSHED WITH
MIL MIL/WATERSHED  RECONSTRUCTION

HeLa (DiD) <0.0001 <0.0001 0.85

HeLa <0.0001 <0.0001 0.60

(phalloidin

568)

1929 (FDA) 0.64 <0.0001 0.90

p values for Tukey-Kramer post hoc tests are shown.
MIL, maximume-intensity linking.

were analyzed. The results show that the segmentation per-
formance of the MIL method can be improved using the pro-
posed preprocessing routines. Further improvement is
obtained by using the watershed transform. The watershed-
by-reconstruction method can improve performance for the
phalloidin 568-stained HeLa cells, while performance deterio-
rates when segmenting DiD-stained HeLa cells (Fig. 5). A vis-
ual comparison of the segmentation results (Fig. 6) confirms
that the segmentation performance of the watershed trans-
form is superior to that of the MIL algorithm.

Table 3 shows p values for comparisons of the segmenta-
tion methods. Testing whether the performance of the MIL
method is significantly different from the improved MIL
methods yields p < 0.0001 on any dataset except for the L929
cells (p = 0.64). The tests also show that the watershed meth-
od’s segmentation performance is different from the perform-
ance of the improved MIL method on all datasets (p <
0.0001), whereas comparison of watershed and watershed-by-
reconstruction does not show any significant differences (p >
0.05).

Analyzing the watershed method in more detail, we
addressed the question of the optimal input image for the
watershed transform. An additional parameter was therefore
incorporated that determines whether the preprocessed fluo-
rescence image, the gradient image, or the distance-trans-
formed image is used as input for the watershed algorithm.
This parameter was also evaluated for each of the three differ-
ent combinations of training and testing dataset. The values
listed in Table 4 confirm that the best input image depends on

Table 4. Preprocessing steps for the watershed transform achiev-
ing the best segmentation performance after parameter optimiza-
tion for each of the specific methods

1929 (FDA) HELA (DID) HELA (PHALLOIDIN)

Improved watershed FL Distance Distance
Watershed by FL Distance FL
reconstruction

“FL" indicates that the watershed transform is directly per-
formed on the original fluorescence image, whereas ““distance’”
shows that the distance-transformed image is used as the optimal
input image.

Cytometry Part A e 79A: 933—-945, 2011

IMPROVED  IMPROVED WATERSHED BY
MIL MIL WATERSHED ~ RECONSTRUCTION
Runtime (s) 1.3 1.5 1.4 1.5

The time required for segmentation of 10 selected images
(with 1,376 X 1,032 pixels) was measured and averaged on an
Intel Core 2 Duo, 2.66 GHz.

the dataset used, but the gradient image did not outperform
competing methods on any dataset.

All of the algorithms presented were developed in relation
to performance and efficiency. A runtime comparison (Table
5) showed that all algorithms can segment a 1.3 megapixel
image in less than 2 s using a 2.66-GHz processor.

DiscussioN

In this study, several watershed-based image segmenta-
tion methods (MIL, extended MIL, improved watershed, and
watershed by reconstruction) were evaluated with regard to
their usability in an adaptive segmentation framework (3) for
fluorescence-stained cells. A key issue in the selection of these
methods was their applicability for the segmentation of differ-
ent types of fluorescence-stained cells. In addition, the param-
eter space had to be kept small while maintaining sufficient
flexibility to adapt to various cell types and stains, making the
methods described suitable for the automated parameter opti-
mization process. As a result of the automatic parameter opti-
mization, a runtime of less than 2 s is required for a typical
image with a size of 1.3 megapixels.

These results and the corresponding statistical tests
clearly demonstrate that the performance of the MIL method
can be improved using the proposed flexible preprocessing
routine for most datasets. Using the watershed transform-
based segmentation routine can significantly improve per-
formance for all datasets. Incorporating morphological recon-
struction operators also improves performance on most data-
sets, but these differences turned out to be not significant.

Analysis of the optimal preprocessed input image for the
watershed method (Table 4) indicates that this parameter
depends on the present dataset as well as on the algorithm
used. It was notable that the gradient image did not outper-
form the competing images on any dataset. These observations
are consistent with the findings reported by other groups
(1,5,17,18,36) using varying input images for the watershed
transform.

The results show that all evaluated segmentation methods
can be optimized for the application on individual data sets
using a genetic algorithm, hence increasing the performance
measurements. Nevertheless, it can also be seen, that with ris-
ing complexity of the image data (increasing number of
touching and overlapping cells, variations and quality of stain-
ing, number of cells), a limit is reached in the methodology.
Analysis of Figure 6 shows that many errors occur in very
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complex scenarios that are challenging even for experienced
biologists.

CONCLUSIONS

This study outlines a framework for the segmentation of
varying cell types based on variations of the watershed trans-
form, combined with an efficient preprocessing routine and
automatic parameter optimization using a genetic algorithm.
The analyses show that the segmentation schemes evaluated
can be adapted effectively to different stains and cell types.
Following an automatic adaptation step, an ideal combination
of preprocessing methods and the watershed transform can
thus be applied robustly to micrographs with the same prepa-
ration and cell stains. However, if a high degree of accuracy is
required, some interactive correction steps are needed for
more complex scenarios, due to an inability to carry out seg-
mentation of overlapping cells. Hence, in order to increase the
performance further under such complex side conditions,
model- based segmentation routines are needed, which incor-
porate prior knowledge about the size, form and appearance
of the cells to be segmented.
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